Bayesian sandwich posteriors for pseudo-true parameters
نویسندگان
چکیده
Under model misspecification, the MLE generally converges to the pseudo-true parameter, the parameter corresponding to the distribution within the model that is closest to the distribution from which the data are sampled. In many problems, the pseudo-true parameter corresponds to a population parameter of interest, and so a misspecified model can provide consistent estimation for this parameter. Furthermore, the well-known sandwich variance formula of Huber (1967) provides an asymptotically accurate sampling distribution for the MLE, even under model misspecification. However, confidence intervals based on a sandwich variance estimate may behave poorly for low sample sizes, partly due to the use of a plug-in estimate of the variance. From a Bayesian perspective, plug-in estimates of nuisance parameters generally underrepresent uncertainty in the unknown parameters, and averaging over such parameters is expected to give better performance. With this in mind, we present a Bayesian sandwich posterior distribution, whose likelihood is based on the sandwich sampling distribution of the MLE. This Bayesian approach allows for the incorporation of prior information about the parameter of interest, averages over uncertainty in the nuisance parameter and is asymptotically robust to model misspecification. In a small simulation study on estimating a regression parameter under heteroscedasticity, the addition of accurate prior information and the averaging over the nuisance parameter are both seen to improve the accuracy and calibration of confidence intervals for the parameter of interest.
منابع مشابه
Risk of Bayesian Inference in Misspecified Models, and the Sandwich Covariance Matrix∗
It is well known that in misspecified parametric models, the maximum likelihood estimator (MLE) is consistent for the pseudo-true value and has an asymptotically normal sampling distribution with "sandwich" covariance matrix. Also, posteriors are asymptotically centered at the MLE, normal and of asymptotic variance that is in general different than the sandwich matrix. It is shown that due to t...
متن کاملA tutorial on approximate Bayesian computation
This tutorial explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function, and hence that can be used to estimate posterior distributions of parameters for simulation-based models. We discuss briefly the philosophy of Bayesian inference and then present several algorithms for ABC. We then a...
متن کاملLearning Bounds for a Generalized Family of Bayesian Posterior Distributions
In this paper we obtain convergence bounds for the concentration of Bayesian posterior distributions (around the true distribution) using a novel method that simplifies and enhances previous results. Based on the analysis, we also introduce a generalized family of Bayesian posteriors, and show that the convergence behavior of these generalized posteriors is completely determined by the local pr...
متن کاملStructured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
We introduce a variational Bayesian neural network where the parameters are governed via a probability distribution on random matrices. Specifically, we employ a matrix variate Gaussian (Gupta & Nagar, 1999) parameter posterior distribution where we explicitly model the covariance among the input and output dimensions of each layer. Furthermore, with approximate covariance matrices we can achie...
متن کاملBayesian inference with rescaled Gaussian process priors
Abstract: We use rescaled Gaussian processes as prior models for functional parameters in nonparametric statistical models. We show how the rate of contraction of the posterior distributions depends on the scaling factor. In particular, we exhibit rescaled Gaussian process priors yielding posteriors that contract around the true parameter at optimal convergence rates. To derive our results we e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012